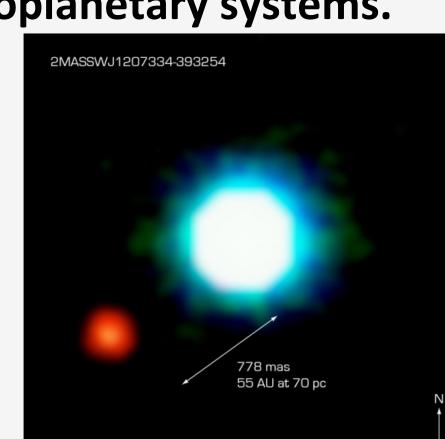
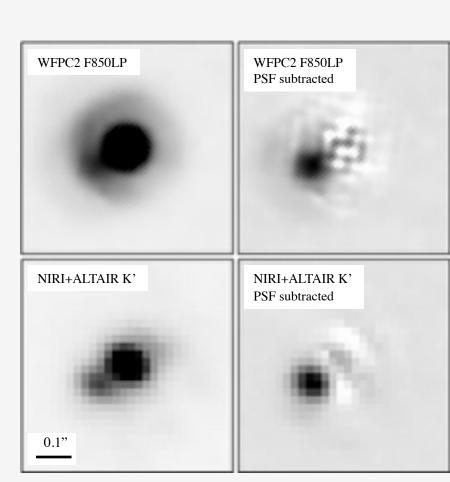


The University of Texas at Austin


Kernel-phases are self calibrating observables used for high contrast imaging at or even below λ/D . We are currently using this technique to search for companions to nearby brown dwarfs in archival HST images. The pipeline will be particularly applicable to JWST and the future 30m class telescopes and will soon be available as a python package.


Background

The detection of companions to stars — both planets and stellar binaries has traditionally relied on three methods: radial velocities (RVs), transits/ eclipses, and direct imaging.

- Transit and RV surveys are insensitive to companions at large semimajor axes. While direct-imaging surveys are more sensitive to such objects, there is often a gap between these two regimes, inside the inner working angle of direct imaging and outside the regime where transits and RVs can efficiently survey.
- Imperfections in the optical path (and AO correction) introduce "speckles" which can be misinterpreted as companions. Speckles can be corrected using many different techniques but all tend to fail near λ/D .
- Interferometric analysis takes advantage of the wave nature of light and can be used to reject speckle noise and detect companions with high contrast at or even below the diffraction limit. Rather than subtracting off the PSF, these techniques uses the information contained in it to infer the geometry of the source. The discovery of the newly forming giant planet LkCa15b by Kraus & Ireland (2012) demonstrates the power of such techniques.

Filling the gap between RV and transit surveys and classical direct imaging surveys would offer a crucial new view of both stellar multiplicity and exoplanetary systems.

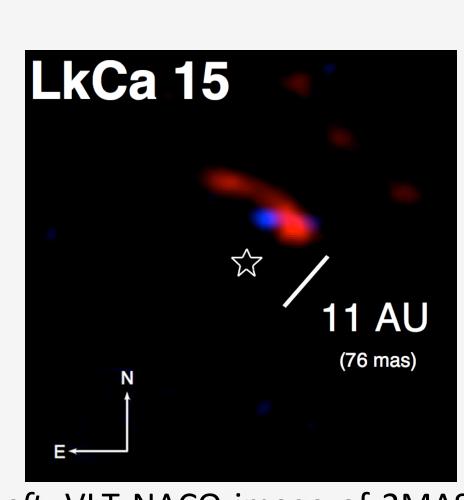
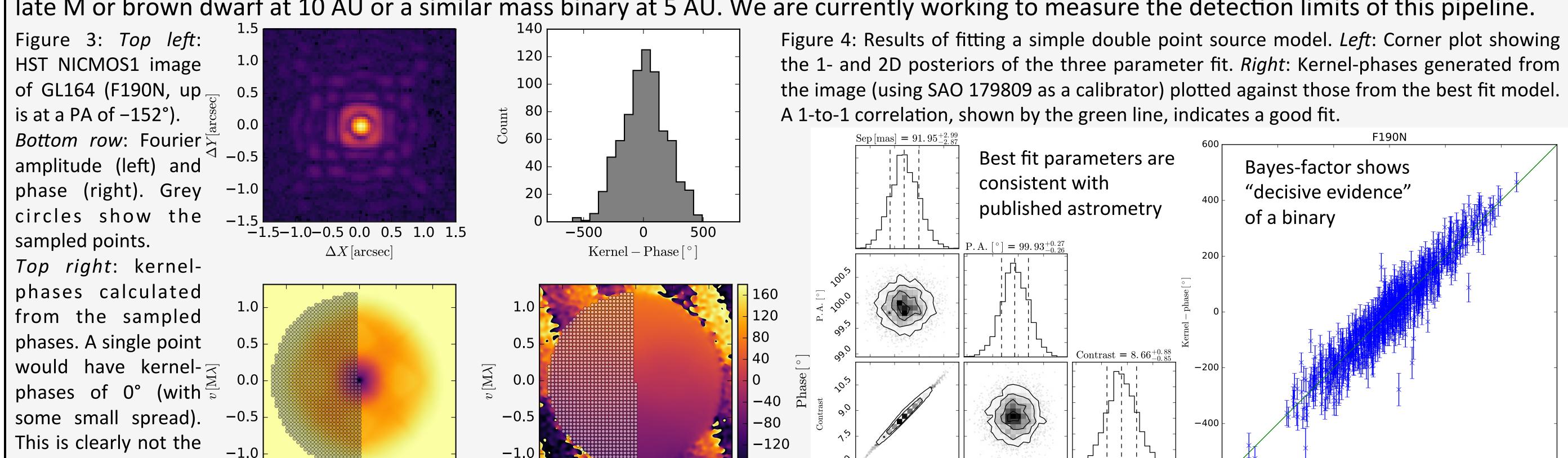


Figure 1: Examples of previously imaged low-mass companions. Left: VLT NACO image of 2MASS 1207AB, a brown dwarf with a \sim 7 M_{Jup} companion at \sim 55 AU (Chauvin et al. 2004). *Center*: WFPC2 and NIRI+ALTAIR raw and PSF subtracted images of the young brown dwarf 2MASS J044144 with a 5-10 M_{lup} companion at 15 AU (Todorov et al. 2010). *Right*: Keck NRM K' (blue) and L' (red) band reconstructed images of LkCa 15b, a \sim 6 M_{Jup} companion at \sim 20 AU inside the gap of a transitional disk around a \sim 2 Myr old solar analogue (Kraus & Ireland 2012).

Email: sfactor@astro.as.utexas.edu

S. Factor is P.I. of HST Cycle 24 Archival project 14561 which is supporting this work. Website: smfactor.github.io



Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

Samuel M. Factor, Adam Kraus Dept. of Astronomy, The University of Texas at Austin

Results: A widely applicable pipeline for high contrast imaging at λ/D

Below is a test case showing a binary brown dwarf observed by Pravdo et al. 2004 (and reanalyzed by Martinache 2010). We are currently analyzing a large set of HST NICMOS/NIC1 observations to search for close in binary and possibly triple brown dwarf systems. We fit and statistically compare single and double point models using Bayesian model comparison (using PyMultiNest; Buchner et al. 2014). Previous estimates of the detection limits (Martinache 2010, Pope et al. 2013) show a detection with 50:1 contrast at 80 mas (0.5λ/d at 1.9) μ m) or 3:1 contrast at 35 mas is possible with 99% confidence. In Taurus, these respectively correspond to a \sim few M_{Jup} mass planet around a late M or brown dwarf at 10 AU or a similar mass binary at 5 AU. We are currently working to measure the detection limits of this pipeline.

What is a Kernel-Phase?

Non-redundant masking (NRM) interferometry, the most common. We can then simply multiply both sides of Equation 1 by **K** to get interferometric analysis technique for single-aperture telescopes, places a mask in the pupil plane, transforming a large single aperture into a sparse interferometer.

 $-1.0 - 0.5 \ 0.0 \ 0.5 \ 1.0$

case, indicating the

presence of a binary.

- severe flux limit. Unmasked apertures would be preferable.
- Kernel-phase analysis models the full aperture as a grid of sub apertures (shown in Figure 2). This defines which spatial frequencies are sampled.
- Since we are interested in the source geometry, we examine the phase of the Fourier transform of the image

Each pair of apertures, or baselines, contributes both the true phase of the source and a phase error from each of the apertures. Combining all the baselines together, we can write a matrix equation for the measured phases:

 $\Phi = \Phi_0 + \mathbf{A} \cdot \phi$

Where Φ is a vector of the measured phases from each baseline, Φ_0 is the true source phase, **A** is a matrix encoding the baselines, and ϕ is a vector of the phase errors from each aperture. Each column of A corresponds to an aperture while each row corresponds to a baseline.

To derive an equation which is independent of the phase errors we use singular value decomposition to calculate the kernel (K) of A such that:

$$\mathbf{K} \cdot \mathbf{A} = 0$$

$$\mathbf{K} \cdot \Phi = \mathbf{K} \cdot \Phi_{\circ} + \mathbf{K} \cdot \mathbf{A} \cdot \phi$$

$$= \mathbf{K} \cdot \Phi_{\circ} \tag{3}$$

Bayes-factor shows

"decisive evidence"

of a binary

This mask only allows \sim 5% of the light to reach the detector, imposing a This produces observables called kernel-phases which are independent of phase errors, similar to closure-phases used with NRM. This technique can achieve similar detection limits to NRM in a fraction of the time and can be applied to dimmer sources where NRM is not feasible, as well as archival data sets. It was first presented by Martinache (2010).

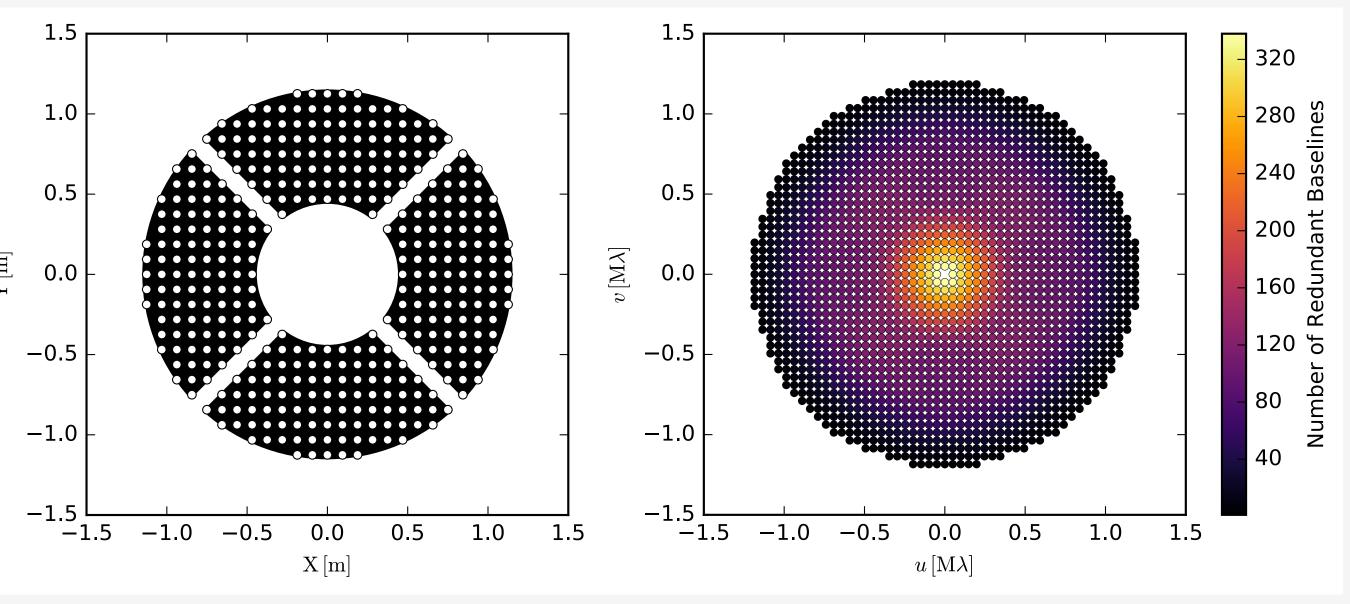


Figure 2: Left: Model HST aperture. Right: The corresponding baselines (at 1.9 μm), colorcoded by the number of distinct pairs of subapertures which contribute to the point. The 392 sub-apertures sample 938 unique baselines and generate 745 kernel-phases.